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Nota

Número Inscrição:

Assinale as 6 questões escolhidas:

( ) Questão 1 ( ) Questão 2 ( ) Questão 3 ( ) Questão 4

( ) Questão 5 ( ) Questão 6 ( ) Questão 7 ( ) Questão 8

Resolva 6 das 8 questões. Justifique todas as suas respostas.

Questão 1. Seja (xn)n∈N uma sequência em R satisfazendo a condição:

|xn+1 − xn| ≤
1

2n
, ∀n ∈ N.

(a) Prove que (xn)n∈N converge.

(b) Se trocarmos a condição por |xn+1 − xn| ≤ 1
n , a sequência ainda converge obrigatoriamente?

Solução: (a) Vamos mostrar que (xn) é uma sequência de Cauchy. Sejamm > n. Pela desigualdade
triangular:

|xm − xn| = |(xm − xm−1) + (xm−1 − xm−2) + · · ·+ (xn+1 − xn)| ≤
m−1∑
k=n

|xk+1 − xk|.

Utilizando a hipótese dada:

|xm − xn| ≤
m−1∑
k=n

1

2k
.

Esta é uma soma geométrica parcial. Podemos majorá-la pela soma infinita a partir de n:

|xm − xn| <
∞∑
k=n

1

2k
=

1

2n−1
.

Dado ϵ > 0, podemos escolher N tal que 1
2N−1 < ϵ. Assim, para todos m > n ≥ N , temos

|xm − xn| < ϵ. Portanto, (xn) é de Cauchy. Como R é completo, a sequência converge.

(b) Não. Considere a sequência das somas parciais da série harmônica: xn =
∑n

k=1
1
k . Temos que:

|xn+1 − xn| =

∣∣∣∣∣
n+1∑
k=1

1

k
−

n∑
k=1

1

k

∣∣∣∣∣ = 1

n+ 1
<

1

n
.

A condição |xn+1 − xn| ≤ 1
n é satisfeita. No entanto, sabe-se que a série harmônica diverge para

+∞. Portanto, (xn) não converge.

Questão 2. Seja f : [0, 1] → R cont́ınua tal que f(0) = f(1). Prove que existe x ∈ [0, 1/2] tal que
f(x) = f(x+ 1/2). Prove o resultado análogo com 1/3 no lugar de 1/2.



Solução: Caso 1/2: Defina a função auxiliar g : [0, 1/2] → R por g(x) = f(x + 1/2) − f(x). A
função g é cont́ınua, pois é soma de funções cont́ınuas (note que f(x + 1/2) é cont́ınua pois é uma
composição de duas funções cont́ınuas). Vamos avaliar g nos extremos do intervalo:

g(0) = f(1/2)− f(0),

g(1/2) = f(1)− f(1/2).

Como f(1) = f(0) por hipótese, temos g(1/2) = −g(0). Se g(0) = 0, então f(1/2) = f(0) e x = 0 é
a solução. Se g(0) ̸= 0, então g(0) e g(1/2) têm sinais opostos. Pelo Teorema do Valor Intermediário
(TVI), existe x ∈ (0, 1/2) tal que g(x) = 0, ou seja, f(x+ 1/2)− f(x) = 0 =⇒ f(x) = f(x+ 1/2).

Caso 1/3: Queremos provar que existe x tal que f(x + 1/3) = f(x), para alguem x tal que x e
x+ 1/3 esteja no domı́nio de f , ou seja, para x ∈ [0, 2/3].

Defina h : [0, 2/3] → R por h(x) = f(x + 1/3) − f(x). Queremos mostrar que h tem uma raiz.
Considere os pontos x = 0 e x = 1/3 e x = 2/3. Avaliamos a soma:

h(0) + h(1/3) + h(2/3) = [f(1/3)− f(0)] + [f(2/3)− f(1/3)] + [f(1)− f(2/3)].

A soma é telescópica e como f(1) = f(0), temos:

h(0) + h(1/3) + h(2/3) = 0.

Se algum desses valores for zero, o problema está resolvido. Se não, não é posśıvel que todos os
três sejam estritamente positivos ou todos estritamente negativos (senão a soma não seria zero).
Portanto, deve haver uma troca de sinal entre h(0), h(1/3) e h(2/3). Pelo TVI, existe x em [0, 1/3]
ou [1/3, 2/3] tal que h(x) = 0, o que implica f(x) = f(x+ 1/3).

Questão 3. Seja f : X → R derivável num ponto interior a ∈ X. Prove que limh→0
f(a+h)−f(a−h)

2h = f ′(a).
Dê um exemplo de função f em que este limite existe, porém f não é derivável no ponto a.

Solução: Podemos reescrever a expressão adicionando e subtraindo f(a) no numerador:

f(a+ h)− f(a− h)

2h
=

f(a+ h)− f(a) + f(a)− f(a− h)

2h

Separando em duas frações e ajustando o sinal do segundo termo:

=
1

2

[
f(a+ h)− f(a)

h
+

f(a)− f(a− h)

h

]
Faça a substituição k = −h no segundo termo. Quando h → 0, k → 0. O termo fica f(a)−f(a+k)

−k =
f(a+k)−f(a)

k . Como f é derivável em a, sabemos que limh→0
f(a+h)−f(a)

h = f ′(a). Portanto, aplicando
o limite:

lim
h→0

f(a+ h)− f(a− h)

2h
=

1

2

[
f ′(a) + f ′(a)

]
=

2f ′(a)

2
= f ′(a).

Exemplo: Considere f(x) = |x| e o ponto a = 0. A função não é derivável em 0 (derivadas laterais
são diferentes: 1 e −1). No entanto, vamos calcular o limite simétrico:

lim
h→0

f(0 + h)− f(0− h)

2h
= lim

h→0

|h| − | − h|
2h

= lim
h→0

|h| − |h|
2h

= lim
h→0

0

2h
= 0.

O limite existe e é igual a 0, mas f ′(0) não existe.
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Questão 4. Seja f : [0, 1] → R cont́ınua. Suponha que para toda função cont́ınua g ∈ C1[0, 1] que satisfaz
g(0) = g(1) = 0, tem-se

∫ 1
0 f(x)g′(x) dx = 0. Prove que f deve ser uma função constante. Dica: construa

g(x) =
∫ x
0 (f(t)− k) dt para uma escolha adequada de uma constante k.

Solução: Seguindo a dica, definamos a constante k como:

k =

∫ 1

0
f(t) dt,

motivados pelo fato de que essa é a única escolha que faz com que uma função da forma g(x) =∫ x
0 (f(t)− k) dt satisfaça g(0) = g(1) = 0. Então, definamos g : [0, 1] → R por:

g(x) =

∫ x

0
(f(t)− k) dt.

Pelo Teorema Fundamental do Cálculo, como f é cont́ınua, g é derivável e g′(x) = f(x) − k é
cont́ınua.

Vamos verificar as condições de contorno de g: 1. g(0) =
∫ 0
0 (f(t) − k)dt = 0. 2. g(1) =

∫ 1
0 (f(t) −

k)dt =
∫ 1
0 f(t)dt−

∫ 1
0 k dt = k − k(1− 0) = 0.

Portanto, g é uma função teste válida para a hipótese do problema. A hipótese diz que
∫ 1
0 f(x)g′(x)dx =

0. Substituindo g′(x) = f(x)− k: ∫ 1

0
f(x)(f(x)− k) dx = 0.

Observe que
∫ 1
0 k(f(x)− k) dx = k

∫ 1
0 g′(x)dx = k[g(1)− g(0)] = 0. Podemos subtrair essa integral

(que vale 0) da equação anterior:∫ 1

0
f(x)(f(x)− k) dx−

∫ 1

0
k(f(x)− k) dx = 0,

logo, ∫ 1

0
(f(x)− k)(f(x)− k) dx = 0,

donde ∫ 1

0
(f(x)− k)2 dx = 0.

A função h(x) = (f(x) − k)2 é cont́ınua e não negativa (h(x) ≥ 0). Se a integral de uma função
cont́ınua não negativa é zero, então a função deve ser identicamente nula. Logo, (f(x)−k)2 = 0 =⇒
f(x) = k para todo x ∈ [0, 1]. Conclúımos que f é constante.

Questão 5. Ache uma primitiva para a função f(x) =

√
1 + x4

x
.

Solução: Fazemos a substituição u = x2, de movo que du = 2xdx:∫ √
1 + x4

x
dx =

∫ √
1 + (x2)2

x2
x dx =

1

2

∫ √
1 + u2

u
du

Fazemos a substituição u = sinh(v) ⇒ du = cosh(v) dv e usando cosh2(v) − sinh2(v) = 1 e o fato
que cosh(v) > 0 temos

1

2

∫ √
1 + u2

u
du =

1

2

∫
cosh2 v

sinh(v)
dv =

1

2

∫
1

sinh(v)
dv +

1

2

∫
sinh(v) dv (1)
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A primeira dessas sai da forma seguinte (na segunda igualdade abaixo tem a substituição t =
cosh(v) ⇒ dt = sinh(v) dv):∫

1

sinh(v)
dv =

∫
sinh(v)

cosh2(v)− 1
dv =

∫
1

t2 − 1
dt =

1

2

∫
1

t− 1
− 1

t+ 1
dt =

=
1

2
ln

(
|t− 1|
|t+ 1|

)
+ C =

1

2
ln

(
cosh(v)− 1

cosh(v) + 1

)
+ C

Substituindo em (1) chegamos a

1

2

∫ √
1 + u2

u
du =

1

4
ln

(
cosh(v)− 1

cosh(v) + 1

)
+

1

2
cosh(v) + C

Por outro lado v = arcsenh(u) = arcsenh(x2) e por isso

cosh2(v) = 1 + sinh2(v) = 1 + u2 ⇒ cosh(v) =
√
1 + u2 =

√
1 + x4

Substituindo chegamos a formula final∫ √
1 + x4

x
dx =

1

4
ln

(√
1 + x4 − 1√
1 + x4 + 1

)
+

1

2

√
1 + x4 + C.

Solução Alternativa Faça u =
√
1 + x4. Dessa forma, u2 = 1 + x4 e, portanto, 2u du = 4x3 dx.

A primitiva desejaa é o resultado da integral

I =

∫ √
1 + x4

x
dx =

1

2

∫
u

u2 − 1
du =

1

2

∫ (
1 +

1

u2 − 1

)
du.

Logo,

I =
1

2

∫
1 du+

1

2

∫
1

u2 − 1
du =

u

2
+

1

2

∫
1

u2 − 1
du.

A segunda integral acima pode ser resolvida por frações parciais:∫
1

u2 − 1
du =

∫
(

1

u− 1
+

1

u+ 1
) du = ln

∣∣∣∣u− 1

u+ 1

∣∣∣∣ .
Combinado os termos e lembrando que u =

√
1 + x4, obtemos o mesmo resultado da solução anterior.

Questão 6. Um intervalo em R é definido como um subconjunto I ⊂ R tal que, para quaisquer a, b ∈ I
com a < b, todo x ∈ R satisfazendo a < x < b também pertence a I. Dizemos que um conjunto X ⊆ R
é conexo quando ele não pode ser particionado em dois conjuntos não vazios A e B tais que X = A∪B,
A ∩B = ∅ e A ∩B = ∅. Mostre que um subconjunto de R é conexo se e só se é um intervalo. Nota: A
e B denotam o fecho de A e B, respectivamente.

Solução: Para provar a equivalência, demonstraremos as duas implicações separadamente.

(⇒) Se X é conexo, então X é um intervalo. Faremos a prova pela contrapositiva. Suponha
que X não seja um intervalo. Então existem a, b ∈ X com a < b e um y ∈ (a, b) tal que y /∈ X.
Defina

A := X ∩ (−∞, y) B := X ∩ (y,∞)

Tem-se X ⊂ R \ {y} = (−∞, y) ∪ (y,∞) e por isso X = A ∪ B. Como A ⊂ (−∞, y) segue que
A ⊂ (−∞, y) = (−∞, y]. Como B ⊂ (y,∞), é claro que A ∩B = ∅. A justificativa que A ∩B = ∅ é
análoga.

(⇐) Se X é um intervalo, então X é conexo. Vide Cap. 5, Seção 2, Teorema 5 do livro Análise
Real Vol 1 (volume fino) do Elon Lages Lima.
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Suponha, por contradição, que X seja um intervalo mas não seja conexo. Então existem conjuntos
não vazios A e B tais que X = A ∪B, A ∩B = ∅ e A ∩B = ∅. Escolha a ∈ A e b ∈ B. Sem perda
de generalidade, assuma a < b. Como X é um intervalo, todo o segmento [a, b] está contido em X.
Defina o número real:

s = sup(A ∩ [a, b]).

Como A ∩ [a, b] é não vazio (contém a) e limitado superiormente (por b), o supremo s existe e
a ≤ s ≤ b. Como [a, b] ⊆ X, temos s ∈ X. Portanto, s deve estar em A ou em B.

1. Onde está s? Por definição de supremo, s é um ponto aderente de A ∩ [a, b], logo s ∈ A.
Como assumimos A∩B = ∅, conclui-se que s /∈ B. Sendo X = A∪B, obrigatoriamente s ∈ A.

2. A contradição: Como s ∈ A e A ∩ B = ∅, temos que s /∈ B. Logo, existe ϵ tal que
(s − ϵ, s + ϵ) ∩ B = ∅. Ademais, s /∈ B =⇒ s /∈ B =⇒ s ̸= b =⇒ s < b. Assim, podemos
escolher δ < epsilon tal que a ≤ s < s+ δ < b. Logo, [s, s+ δ) ⊂ [a, b] e [s, s+ δ) ∩B = ∅. O
que implica que [s, s+ δ) ⊆ A. Isso contradiz o fato de s ser supremo de A.

A suposição de que X é desconexo é falsa. Portanto, se X é um intervalo, X é conexo.

Questão 7. Seja fn : [0,∞) → R a seguinte sequência de funções fn(x) =
sen(nx)

1 + nx

(a) Mostre que fn converge pontualmente a uma função cont́ınua f .

(b) Mostre que fn não converge uniformemente para f .

Solução: (a). Para x = 0 tem-se fn(x) = 0 para todo n então

lim
n→∞

fn(0) = 0

Em geral para x ≥ 0 ∣∣∣∣sen(nx)1 + nx

∣∣∣∣ ≤ 1

1 + nx

Como 1
1+nx converge pra 0 para x > 0 segue que fn(x) converge pontualmente para a função nula

para todo x ≥ 0.

(b) Suponha que fn converge uniformemente para f . Por definição isso quer dizer que dado ϵ > 0
existe n0(ϵ) ∈ N tal que

|fn(x)− f(x)| < ϵ, ∀n ≥ n0(ϵ), ∀x ≥ 0

Observe que

fn

( π

2n

)
=

1

1 + π/2
. (2)

Se escolhermos ϵ < 1
1+π/2 e n > n0(ϵ) em (2) teremos, devido a definição de convergencia uniforme,

que
1

1 + π/2
= |fn

( π

2n

)
| < ϵ <

1

1 + π/2
.

O que é uma contradição.
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Questão 8. Seja f : R → R uma função convexa.

(a) Mostre que limx→−∞ f(x) = −∞ implica limx→∞ f(x) = ∞.

(b) Dê exemplo de uma função de classe C2, estritamente convexa, ou seja, tal que f ′′ > 0, que satisfaz
a propriedade de que

lim
x→−∞

f(x) = −∞

Solução: Para (a) iremos utilizar as desigualdades que define uma função convexa. Para quaisquer
triplo a < x < b tem-se

f(x)− f(a)

x− a
≤ f(b)− f(a)

b− a
≤ f(b)− f(x)

b− x

Usamos isso para x = 0 em cujo caso a < 0 e b > 0. Substituindo na primeira e na terceira fração
chegamos a

f(0)− f(a)

−a
≤ f(b)− f(0)

b
⇒ f(0)− f(a) ≤ −a

b
(f(b)− f(0))

Pega agora b > 0 e a = −b < 0 para concluir que

f(0)− f(−b) ≤ f(b)− f(0)

ou seja
−f(−b) ≤ f(b)− 2f(0) (3)

Se deixar b → ∞ certamente −b → −∞ e por isso limb→∞ f(−b) = −∞, pela hipotese dada.
Concluimos de (3) que

lim
b→∞

f(b)− 2f(0) = ∞

Obviamente isso implica que

lim
b→∞

f(b) = ( lim
b→∞

f(b)− 2f(0)) + 2f(0) = ∞.

Para (b) considere a função f(x) = x + ex. Uma função f : R → R é estritamente convexa se
f ′′(x) > 0 para todo x. No caso

f ′′(x) = ex > 0

Por outro lado, lim
x→−∞

ex = 0 e por isso lim
x→−∞

x+ ex = −∞.


