

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE MATEMÁTICA

Exame de Seleção de Mestrado

PGMAT - MESTRADO EM MATEMÁTICA

08 de Julho de 2024

Número de inscrição:			
() Questão 5	() Questão 6	() Questão 7	() Questão 8

Resolva 5 das 8 questões abaixo.

Questão 1. Sejam a e b dois números racionais não negativos. Mostre que $\sqrt{a} + \sqrt{b}$ é racional se, somente e se, \sqrt{a} e \sqrt{b} são ambos racionais.

Questão 2. Seja $p: \mathbb{R} \to \mathbb{R}$ um polinômio. Mostre que p é uniformemente contínua se, e somente se, p tem grau ≤ 1 .

Questão 3. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função C^1 . Mostre que f é uma função Lipschitz com constante K se, e somente se, $|f'(x)| \leq K$, para todo $x \in \mathbb{R}$. (Lembre que uma função $f: \mathbb{R} \to \mathbb{R}$ é Lipschitz com constante K se $|f(a) - f(b)| \leq K|a - b|$, para todos $a, b \in \mathbb{R}$).

Questão 4. Seja $f: [a, b] \to \mathbb{R}$ uma função contínua com a < b. Mostre que se $\int_a^b x^n f(x) dx = 0$, para todo número natural n, então $f \equiv 0$.

Questão 5. Seja $\{x_n\}$ uma sequência de números reais positivos. Mostre que se x_n converge, então o seu limite é não negativo.

Questão 6. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua. Assuma que $f(x) \ge 0$ para todo $x \in [0, 1]$. Prove que se f(c) > 0, para algum $c \in (0, 1)$, então $\int_0^1 f(x) dx > 0$.

Questão 7. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua tal que $|f(x) - f(y)| \le (x - y)^2$, para quaisquer $x, y \in \mathbb{R}$. Prove que f é constante.

Questão 8. Suponha que f é uma função real continuamente diferenciável em [a,b], tal que f(a)=f(b)=0 e $\int_a^b f^2(x)dx=1$. Prove que

$$\int_{a}^{b} x f(x) f'(x) dx = -\frac{1}{2} e \int_{a}^{b} \left[f'(x) \right]^{2} dx. \int_{a}^{b} x^{2} f^{2}(x) dx \ge \frac{1}{4}.$$