

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE MATEMÁTICA

Exame de Seleção 2023 - Doutorado

PGMAT - UFC

26 de junho de 2023

Importante:

- 1. Apresente suas soluções de forma clara e bem organizada.
- 2. Os argumentos devem ser cuidadosamente justificados para serem elegíveis à pontuação.

Questão 1. Seja $M_{n\times n}(\mathbb{C})$ o conjunto das matrizes de ordem $n\times n$ com entradas em \mathbb{C} . Consideramos $M_{n\times n}(\mathbb{C})$ equipado com a norma euclidiana via identificação natural de $M_{n\times n}(\mathbb{C})$ com \mathbb{C}^{n^2} . Mostre que

$${A \in M_{n \times n}(\mathbb{C}) : \det(A) \neq 0}$$

é conexo por caminhos.

Questão 2. Sejam $K \subset \mathbb{R}^{n+1}$ um subconjunto compacto e p um ponto de $\mathbb{R}^{n+1} - K$. Suponha que: para cada vetor unitário $v \in \mathbb{S}^n$, a semirreta $\{p + tv : t \geq 0\}$ intersecta exatamente um ponto de K. Mostre que K é homeomorfo à esfera \mathbb{S}^n .

Questão 3. Seja $A \subset \mathbb{R}^2$ aberto. Mostre que não existe $f: A \to \mathbb{R}$ injetiva e de classe C^1 .

Questão 4. Seja $X = \{(x, y) \in \mathbb{R}^2 \ x^2 = y^3\}$. Mostre que não é possível escrever $X = f^{-1}(c)$ onde $f \colon \mathbb{R}^2 \to \mathbb{R}$ é de classe C^1 e c é um valor regular de f.

Questão 5. Sejam $M \subset \mathbb{R}^n$ um domínio compacto, conexo e com fronteira regular, $C^{\infty}(M) = \{u : M \to \mathbb{R}; u \text{ \'e suave}\} \text{ e } \Delta : C^{\infty}(M) \to C^{\infty}(M) \text{ o operador Laplaciano, dado por } \Delta u = \sum_{i=1}^n \frac{\partial^2 u}{\partial x_i^2}$. Diz-se que um número real λ é um autovalor de Dirichlet para M quando existe uma função não nula $u \in C^{\infty}(M)$ tal que $\Delta u = -\lambda u$ e $u|_{\partial M} = 0$. Similarmente, diz-se que λ é um autovalor de Neumann quando existe uma tal função satisfazendo $\Delta u = -\lambda u$ e $\frac{\partial u}{\partial n}|_{\partial M} = 0$, em que η denota o campo normal unitário exterior a ∂M .

- (a) Prove que todo autovalor de Dirichlet é estritamente positivo.
- (b) Demonstre que 0 é um autovalor de Neumann, e que os demais autovalores de Neumann são estritamente positivos.
- (c) Exiba todos os autovalores de Dirichlet e todos os autovalores de Neumann para $M = [0,1] \subset \mathbb{R}$.

Questão 6. Sejam $k \in \mathbb{R}$ e $f : \mathbb{R}^n \to \mathbb{R}$ uma função suave tal que $f(tx) = t^k f(x)$, para quaisquer $x \in \mathbb{R}^n$ e $t \in \mathbb{R}^+$.

(a) Demonstre que

$$\int_{\mathbb{R}^n} \Delta f(x) \, dx = \int_{\mathbb{S}^{n-1}} k f(p) \, dp,$$

sendo $\mathbb{B}^n=\{x\in\mathbb{R}^n;\ |x|\leq 1\},\ \mathbb{S}^{n-1}=\partial\mathbb{B}^n$ e dp o elemento de volume de \mathbb{S}^{n-1} .

(b) Conclua que, no caso em que $f(x,y,z)=3x^2y^2+6y^2z^2+6x^2z^2$, ocorre

$$\int_{\mathbb{S}^2} f(p) \, dp = 4\pi.$$

Questão 7. Seja $F \subset \mathbb{R}^n$ um conjunto fechado e $\psi : F \to \mathbb{R}^m$ uma função suave.

- (a) Mostre que existe uma função suave $\Psi: \mathbb{R}^n \to \mathbb{R}^m$ tal que $\Psi(x) = \psi(x)$, para todo $x \in F$.
- (b) Dê um contra exemplo para mostrar que a conclusão do item anterior é falsa se F não for fechado.
- (c) Dê um contraexemplo para mostrar que a conclusão do item (a) é falsa se o contradomínio de ψ não for o espaço \mathbb{R}^m .