

Exame de Seleção de Mestrado

PGMAT - Mestrado em Matemática

20 de Junho de 2022

Candidato:		
Número de inscrição:		

Questão 1. Mostre que o conjunto de todos os subconjuntos limitados de \mathbb{Z} é enumerável. (Obs: um conjunto $S \subset \mathbb{Z}$ é dito limitado se existe M > 0 tal que $|s| \leq M$ para todo $s \in S$.)

Questão 2. Considere as sequências $(p_n)_{n\geq 1}$ e $(q_n)_{n\geq 1}$ definidas recursivamente da seguinte maneira:

$$p_1 = 1$$
, $q_1 = 1$, $p_n = q_{n-1} + 2p_{n-1}$, $q_n = p_{n-1} + q_{n-1}$.

Mostre que a sequência $\left(\frac{p_n}{q_n}\right)_{n\geq 1}$ é convergente e determine o limite $\lim_{n\to\infty}\frac{p_n}{q_n}$.

Questão 3. Sejam $I \subset \mathbb{R}$ um intervalo e $K \subset \mathbb{R}$ um compacto. Mostre que uma função $f \colon I \to K$ é contínua se, e somente se, para toda sequência $\{(x_n, y_n)\}_{n \in \mathbb{N}} \subset \operatorname{Graf}(f) = \{(a, b) \in \mathbb{R} \times \mathbb{R} : b = f(a)\}$ tal que $\lim_{n \to +\infty} x_n = x$ e $\lim_{n \to +\infty} y_n = y$ tem-se que $(x, y) \in \operatorname{Graf}(f)$.

Questão 4. Considere a função $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^4 - 2x^3 + x^2 - \frac{1}{16}$. Quantas raízes f possui no intervalo [0,1]?

Questão 5. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função C^1 tal que para todo ponto $x \in \mathbb{R}$, $f'(x) \neq 0$. Suponha que para todo compacto $K \subset \mathbb{R}$, tem-se que $f^{-1}(K)$ também um compacto. Mostre que f é bijeção e sua inversa é uma função C^1 .

Questão 6. Sejam I=(-a,a) com a>0 e $f\colon I\to\mathbb{R}$ uma função C^2 tal que f(0)=0 e f'(0)=0. Mostre que se $|f''(x)|\leq 1$ para todo $x\in I$, então $|f(x)|\leq \frac{1}{2}x^2$ para todo $x\in I$.

Questão 7. Seja $f:[a,b]\to\mathbb{R}$ uma função não negativa que é integrável a Riemann. Mostre que se $\int_a^b f(x)dx=0$, então $\{x\in[a,b]:f(x)\neq 0\}$ tem medida nula.

Questão 8. Dada $f:[0,1] \to \mathbb{R}$ uma função contínua, defina a sequência de funções $(f_n)_{n\geq 0}$ do seguinte modo

$$f_0 = f$$
, $f_{n+1}(x) = \int_0^x f_n(t) dt$, $n = 0, 1, 2, ...$

Mostre que $(f_n)_{n\geq 0}$ converge uniformemente para a função identicamente nula.