

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE MATEMÁTICA

Exame de Qualificação em Análise

PGMAT - Doutorado em Matemática

01 de Abril de 2022

$\mathbf{Candidato}$:	

Resolva 6 das 8 questões abaixo. Escolha e resolva 3 questões de cada parte

Parte I

Questão 1. Sejam $f \in L^1(\mathbb{R}^n)$ e K uniformemente contínua e limitada em \mathbb{R}^n . Prove que f * K é limitada e uniformemente contínua em \mathbb{R}^n .

Questão 2. Prove que não existe nenhum conjunto mensurável de [0,1] que separe em medida qualquer intervalo ao meio. Mais precisamente, prove que não existe $E \subset [0,1]$ mensurável tal que

$$|E \cap [0,x]| = x/2, \quad \forall x \in [0,1].$$

Questão 3. Seja $|A|<\infty$ um subconjunto de \mathbb{R}^n e $f:A\to\mathbb{R}$ uma função mensurável e limitada. Prove que

$$\lim_{p \to \infty} ||f||_{L^p(A)} = ||f||_{L^{\infty}(A)}$$

Questão 4. Seja Q_1 o cubo unitário em \mathbb{R}^n . Assuma que para qualquer cubo $Q\subset Q_1$ vale

$$\left| \left\{ x \in Q; \ |u(x) - u_Q| > \alpha \right\} \right| \le Ae^{-B\alpha}|Q|, \quad A, B > 0$$

onde $u_Q = \int_Q u(x) dx$. Prove a seguinte estimativa para p > 0

$$\sup_{Q \subset Q_1} \left(\frac{1}{|Q|} \int_Q |u - u_Q|^p dx \right)^{1/p} \le C \cdot B^{-1}, \quad C = C(A, p) > 0.$$

Conclua que $u \in L^p(Q)$ para todo p > 0.

Parte II

Questão 5. Seja X um espaço de Banach reflexivo. Prove que todo funcional $f \in X^*$ atinge sua norma. Mais precisamente, mostre que $\forall f \in X^*, \exists x_f \in X \text{ com } ||x_f|| \leq 1 \text{ tal que } f(x_f) = ||f||.$

Questão 6. Prove o Teorema de Mazur que diz que se $C \subset X$ é um conjunto convexo em um espaço de Banach $(X, ||\cdot||)$ então o fecho forte e o fecho fraco de C em X coincidem.

Questão 7. Seja $T: \mathcal{H} \to \mathcal{H}$ um operador compacto num espaço de Hilbert. Prove que R(T), a imagem de T, não contém nenhum subespaço fechado de dimensão infinita.

Questão 8. Seja 1 . Suponha que

$$\{f_n\}_{n\geq 1} \cup \{f\} \subset L^p[0,1].$$

Prove que as seguintes afirmações são equivalentes

a) $\{f_n\}_{n\geq 1}$ é uma sequência limitada em $L^p[0,1]$ e

$$\int_0^x f_n(s)ds \to \int_0^x f(s)ds \quad \forall x \in [0,1] \quad \text{quando} \quad n \to \infty$$

b) $f_n \rightharpoonup f$ in $L^p[0,1]$ quando $n \to \infty$.