

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE MATEMÁTICA

Exame de Qualificação de Mestrado

PGMAT - Mestrado em Matemática

12 de Março de 2019

Candidato:

Questão 1. Prove que a esfera $\mathbb{S}^n = \left\{ (x_1, \dots, x_n) \in \mathbb{R}^n : \sum_{i=1}^n x_i^2 = 1 \right\}$ é conexa por caminhos.

Questão 2. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0), \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$

A função f é de classe C^2 em \mathbb{R}^2 ?

Questão 3. Seja $\mathcal{B}: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^p$ uma aplicação bilinear. Mostre que \mathcal{B} é contínua e diferenciável com $\mathcal{B}'(x,y) \cdot (u,v) = \mathcal{B}(u,y) + \mathcal{B}(x,v)$.

Questão 4. Seja $f: \mathbb{R}^m \to \mathbb{R}^n$ contínua. São equivalentes:

I) $\forall K \subset \mathbb{R}^n$ compacto, $f^{-1}(K) \subset \mathbb{R}^m$ é compacto;

II) Se (x_k) em \mathbb{R}^m não possui subseqüências convergentes, então $(f(x_k))$ em \mathbb{R}^n também não possui subseqüências convergentes.

Questão 5. Mostre que uma norma N em \mathbb{R}^n é proveniente de um produto interno se, e somente se, esta norma satisfaz a Lei do Paralelogramo, isto é,

$$N(x+y)^2 + N(x-y)^2 = 2(N(x)^2 + N(y)^2), \quad \forall x, y \in \mathbb{R}^n.$$

Questão 6. Sejam $U \subseteq \mathbb{R}^n$ aberto e $f: U \to \mathbb{R}^n$ uma aplicação de classe C^1 . Suponha que para algum $x_0 \in U$ tem-se $Df(x_0): \mathbb{R}^n \to \mathbb{R}^n$ não é isomorfismo. Prove que

$$\lim_{r \to 0^+} \frac{vol(f(\overline{B}_r(x_0)))}{vol(\overline{B}_r(x_0))} = 0.$$