

UNIVERSIDADE FEDERAL DO CEARÁ PÓS-GRADUAÇÃO EM MATEMÁTICA

Exame de Acesso ao Doutorado

Data:	22	/02	/2017
-------	----	-----	-------

Horário: 14:00 às 18:00 horas

Aluno(a):_______Nota:_____

- 1. a) Sejam $f: U \subset \mathbb{R}^n \to \mathbb{R}$ e $g: V \subset \mathbb{R}^n \to \mathbb{R}$ funções suaves definidas nos abertos $U \subset \mathbb{R}^n$ e $V \subset \mathbb{R}^n$ respectivamente. Seja $\varphi: U \to V$ um difeomorfismo suave tal que $g \circ \varphi = f$. Mostre que $p \in U$ é um ponto crítico não-degenerado de f se, e somente se, $q = \varphi(p)$ é um ponto crítico não degenerado de g.
 - b) Seja $f: U \subset \mathbb{R}^2 \to \mathbb{R}$ um função suave, definida no aberto $U \subset \mathbb{R}^2$, com ponto crítico $p \in U$. Mostre que: se a matriz hessiana de f em p tem determinante negativo, então, em qualquer vizinhança de p, há um par de pontos x e y tais que f(x) < f(p) < f(y).
 - 2. Seja $A\subset\mathbb{R}^3$ o subconjunto definido pela interseção de uma bola aberta centrada na origem com o cone abaixo

$$\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2 \text{ e } z \ge 0\}.$$

Mostre que não existe uma aplicação diferenciável $F: U \subset \mathbb{R}^2 \to \mathbb{R}^3$, definida em aberto $U \subset \mathbb{R}^2$, com posto constante igual a 2, tal que sua imagem seja igual ao conjunto A.

3. Mostre que toda função monótona $f:[0,1] \to \mathbb{R}$ é integrável.

- 4. Seja $f:U\to\mathbb{R}$ definida em $U=\{(x,y)\in\mathbb{R}^2;x>0,y>0\}$ por $f(x,y)=e^{-(x^2+y^2)}.$
 - a) Considere a exaustão $U = \bigcup L_k$, onde

$$L_k = \left\{ r \cdot e^{i\theta}; \frac{1}{k} \le r \le k, \frac{1}{k} \le \theta \le \frac{\pi}{2} - \frac{1}{k} \right\},\,$$

use coordenadas polares e conclua que a integral imprópria $\int_U f(x,y) dx dy$ é convergente e vale $\pi/4$.

- b) Por outro lado, usando a exaustão $U = \bigcup K_i$, onde $K_i = \left[\frac{1}{i}, i\right] \times \left[\frac{1}{i}, i\right]$, mostre que $\int_U f(x, y) dx dy = \left(\int_0^\infty e^{-t^2} dt\right)^2$.
- c) Conclua que $\int_0^\infty e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.
- 5. Seja $\mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1 \subset \mathbb{R}^4$ o toro bidimensional com a orientação determinada pelo produto de variedades diferenciáveis orientadas. Calcule

$$\int_{\mathbb{T}^2} \omega,$$

onde $\omega(x_1, x_2, x_3, x_4) = x_1 x_2 x_3 dx_4 \wedge dx_2$.

6. Suponha que existe ω uma (n-1)-forma em $\mathbb{R}^n \setminus \{0\}$ tal que $d\omega = 0$ e

$$\int_{\mathbb{S}^{n-1}} \omega \neq 0,$$

onde $\mathbb{S}^{n-1}:=\{x\in\mathbb{R}^n:\,||x||=1\}$ e
 $n\geq 2.$ Demonstre que ω não é exata.