

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE MATEMÁTICA

Exame de Seleção em Análise no \mathbb{R}^N

PGMAT - Pós-Graduação em Matemática

05 de Julho de 2016

Questão 1. Seja $U \subset \mathbb{R}^n$ aberto e conexo. Se $f: U \to \mathbb{R}$ é uma função de classe C^1 tal que $\frac{\partial f}{\partial v}(p) = 0$, para todo $p \in U$ e para todo $v \in \mathbb{R}^n$, então f é constante.

Questão 2. Seja $K \subset \mathbb{R}^N$ tal que para toda função contínua $f:K \to \mathbb{R}$ existe uma constante positiva C_f tal que

$$|f(x)| \le C_f, \quad \forall x \in K.$$

Prove que K é um compacto.

Questão 3. Seja $f: \mathbb{R}^N \to \mathbb{R}$ uma função contínua. Defina

$$g(x) := \lim_{r \to 0} \left(\frac{1}{|B_r(x)|} \int_{B_r(x)} f(y) dy \right).$$

Mostre que $g \equiv f$.

Questão 4. Enuncie e prove o Teorema de Green sob a condição de que a curva considerada delimita uma região $D \subset \mathbb{R}^2$ dada por

$$D = \{(x, y) \in \mathbb{R}^2 : \alpha \le x \le \beta \text{ e } f(x) \le y \le g(x)\},$$

onde $f,g:[\alpha,\beta]\to\mathbb{R}$ são funções contínuas.

Questão 5. Determine os pontos de altura máxima e mínima, em relação ao eixo 0z, da superfície $\Sigma = \{(x, y, z) \in \mathbb{R}^3 : x^2 + 2y^2 + z^2 - 4x + 4y - 2z + 6 = 0\}.$

Questão 6. Encontre o volume do sólido que está abaixo do parabolóide $z=x^2+y^2$ e acima da região D do plano xy limitada pela reta y=2x e a parábola $y=x^2$.

Questão 7. Sejam $B_{2016} \subset \mathbb{R}^m$ e $f: B_{2016} \to \mathbb{R}^N$ uma função de classe C^1 localmente injetiva. Prove que $m \leq N$ e que o conjunto

$$D = \left\{ x \in B_{2016} : f'(x) : \mathbb{R}^m \to \mathbb{R}^N \quad \text{\'e injetiva } \right\}$$

é aberto e denso em B_{2016} .